Group Homomorphisms as Error Correcting Codes

نویسنده

  • Alan Guo
چکیده

We investigate the minimum distance of the error correcting code formed by the homomorphisms between two finite groups G and H. We prove some general structural results on how the distance behaves with respect to natural group operations, such as passing to subgroups and quotients, and taking products. Our main result is a general formula for the distance when G is solvable or H is nilpotent, in terms of the normal subgroup structure of G as well as the prime divisors of |G| and |H|. In particular, we show that in the above case, the distance is independent of the subgroup structure of H. We complement this by showing that, in general, the distance depends on the subgroup structure of H.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

One-point Goppa Codes on Some Genus 3 Curves with Applications in Quantum Error-Correcting Codes

We investigate one-point algebraic geometric codes CL(D, G) associated to maximal curves recently characterized by Tafazolian and Torres given by the affine equation yl = f(x), where f(x) is a separable polynomial of degree r relatively prime to l. We mainly focus on the curve y4 = x3 +x and Picard curves given by the equations y3 = x4-x and y3 = x4 -1. As a result, we obtain exact value of min...

متن کامل

Constacyclic Codes over Group Ring (Zq[v])/G

Recently, codes over some special finite rings especially chain rings have been studied. More recently, codes over finite non-chain rings have been also considered. Study on codes over such rings or rings in general is motivated by the existence of some special maps called Gray maps whose images give codes over fields. Quantum error-correcting (QEC) codes play a crucial role in protecting quantum ...

متن کامل

An approach to fault detection and correction in design of systems using of Turbo ‎codes‎

We present an approach to design of fault tolerant computing systems. In this paper, a technique is employed that enable the combination of several codes, in order to obtain flexibility in the design of error correcting codes. Code combining techniques are very effective, which one of these codes are turbo codes. The Algorithm-based fault tolerance techniques that to detect errors rely on the c...

متن کامل

A class of multiple-error-correcting codes and the decoding scheme

linear error-correcting codes used in communications. (14) I. S. Reed, “A class of multiple-errorcorrecting codes and the decoding scheme,” IRE. Trans. A class of multiple-error-correcting codes and the decoding scheme. more. less. I. Reed · Details · Authors · Fields of science · Bibliography · Quotations · Similar. linear error correcting codes used in communications (2).For bit study is to d...

متن کامل

An Approach to Increasing Reliability Using Syndrome Extension

Computational errors in numerical data processing may be detected efficiently by using parity values associated with real number codes, even when inherent round off errors are allowed in addition to failure disruptions. This paper examines correcting turbo codes by straightforward application of an algorithm derived for finite-field codes, modified to operate over any field. There are syndromes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2015